PAPER 242-31

SQL SET OPERATORS: SO HANDY VENN YOU NEED THEM
Howard Schreier, Howles Informatics

ABSTRACT

When it comes to combining data from multiple tables in the SQL Procedure, joins get most of the
attention and subqueries are probably second. Often overlooked are the set operators (OUTER
UNION, UNION, INTERSECT, and EXCEPT). Thistutorial begins by relating OUTER UNION to
amilar functiondlity provided by the DATA gep's SET datement, then explains and demongrates the
full repertoire of set operators.

INTRODUCTION

Set operators are 0 designated because they are conceptualy derived from mathematical set theory.
The three basic set operators are UNION, INTERSECT, and EXCEPT. All three, with variations (in
particular, OUTER UNION) and options, are implemented in PROC SQL.

JOINS vS. SET OPERATORS

Before we delve into the details of PROC SQL’ s set operators, let’ s establish the fundamental
ditinctions between joins and set operators. This can be done with a smple example, starting with the
cregtion of two tiny tables. Here' sthe code:

DATA first;
A =1,
RUN,;

DATA second;
B = 2;
RUN;

So each of these tables has one row and one column. We can use PROC SQL to combine the two via
asmplecrossjoin:

SELECT *
FROM first, second
Thereaultis:
A B

Now we' Il 1ook at the UNION, which isthe smplest form of the most widdly used of the set operators.
The code to combine our two tablesis:

SELECT *
FROM first
UNI ON

SELECT *

FROM second

Before we look &t the effect of this statement, let’slook at the syntax and compare it to that of thejoin.
Notice that “UNION” isinserted between two SELECTS (each of which has, asit must, a subordinate
FROM clause). A set operator works on the results of two SELECTSs. Thisisunlikeajoin, whichis
implemented within the FROM clause of asingle SELECT. Notice dso that thereis but one
semicolon, terminating the entire composite Satement.

Now it'stimeto look at the result generated by this code:

We see the two numeric vaues, thistime arranged verticaly rather than horizontaly. This reflects the
fundamenta difference between joins and set operators. Joins adign rows and accrete columns; set
operators aign columns and accrete rows. Thisis something of an oversmplification of course. SQL is
not a matrix language and provides relaively little symmetry between rows and columns. So the contrast
drawn here between joins and set operators is only afoundation for the details to follow.

OUTER UNION

Not al of the PROC SQL set operators have DATA step counterparts, and in some cases the DATA
step counterparts are rather convoluted. Since the OUTER UNION operator, with the
CORRESPONDING option in effect, does have a sraightforward DATA step pardld, we ll sart with
it.

Our first choreisto creste apair of tables with which to demondrate. This code:

CREATE TABLE one AS

SELECT name, age, height

FROM sashel p. cl ass

WHERE age<l14 and LENGTH(nane) <6
ORDER BY age, RANUN (1)

CREATE TABLE two AS

SELECT nane, wei ght, age

FROM sashel p. cl ass

VWHERE age<l14 and LENGTH(nane) >5
ORDER BY age, RANUNI (1)

produces ONE:

Name Age Height
Joyce 11 51.3
John 12 59
Jane 12 59.8
James 12 57.3
Alice 13 56.5
and TWO:
Name Weight Age
Thomas 85 11
Robert 128 12
Louise 77 12
Jeffrey &4 13
Barbara 98 13

The reference to the pseudo-random number function RANUNI in the ORDER BY clauses has
succeeded in shuffling the order of the rows within each AGE group.

Concatenation

The two data sets can be combined vertically, or concatenated, in aDATA step by naming them both in
asngle SET gatement. Hereisthe code:

DATA concat ;
SET one
t wo

RUN,

Theresult looks like this:

Name Age Height Weight
Joyce 11 51.3
John 12 59
Jane 12 59.8
James 12 57.3
Alice 13 56.5
Thomas 11 . 85
Robert 12 . 128
Louise 12 . 7
Jeffrey 13 84
Barbara 13 . 9%

The equivaent SQL datement is

CREATE TABLE concat AS

SELECT *

FROM one

QUTER UNI ON CORRESPONDI NG
SELECT *

FROM two

It produces the same resuilt.

Natice that the common (that is, like-named) columns (NAME and AGE) have been digned. That isa
consequence of the CORRESPONDING option. The mismatched columns (HEIGHT and WEIGHT)
aso appear, with missing vaues for the cells which have no “ancestry” in the source tables; thet is
characterigtic of an OUTER UNION (as digtinguished from asmple UNION). The fact that the
DATA sep and PROC SQL place the columns in the same order is a coincidence, attributable to the
relative smplicity of this example (SQL places the common columnsfirg, followed by the columns
which appear only in the first SELECT, followed by the columns which appear only in the second
SELECT; the DATA sep places the varigbles from the first data set firdt, followed by the variables
which are found only in the second data set).

The order of the rowsis dso the same. Since thereis no ORDER BY clause in the SQL code, the SQL
processor is not obligated to ddiver itsresultsin any particular order. The order we observeisbascaly
a consequence of interna optimization; the processor is avoiding unnecessary work by smply
preserving the order in which it encounters the rows.

Data Type Compatibility

The dignment of columns in these examples has worked smoothly because the digned columns have
matched with respect to data type (numeric or character). Since column alignment is an essential aspect
of dmogt al of the set operators, it's worth exploring this a bit more. We' |l need some test data sets
with ddliberate type mismatches.

DATA num
id=3;
val ue = 0;
RUN;

DATA char;

id =4

val ue = 'abc';
RUN;

Notice that VALUE is numeric in dataset NUM but character in data set CHAR. So when we attempt
aDATA step concatenation with

DATA bot h;
SET num char;
RUN;

we get afalure, with thislog message:

|ERRO% Vari abl e val ue has been defined as both character and nuneric. |

The new data set (BOTH) is created, but contains no observations. If we run the pardld SQL code:

CREATE TABLE both AS

SELECT *
FROM num
OUTER UNI ON CORRESPONDI NG
SELECT *
FROM char
the log messageis

ERROR. Colum 2 fromthe first contributor of QUTER UNION i s not the same
type as its counterpart fromthe second.

Unlike the DATA step, PROC SQL does not create even an empty table in this Stuation.

Thereisjust one set operator which isimmune to data type mismatches because it does no column
aignment; that is the OUTER UNION operator, without the CORRESPONDING option. To
illugtrate, we can run adisplay query (that is, afreestanding SELECT dtatemert rather than one within a
CREATE statement):

SELECT *

FROM num

QUTER UNI ON

SELECT *

FROM char

Thereault is
id val ue id value
3 0
. 4 abc

Notice that the origind ID columns from the two source tables are kept separate, even though they are
compatible with regard to data type. The OUTER UNION operator attempts no column aignment
whasoever. Thusit isimmune to error conditions due to type mismatch and will display dl data from the
source tables. However, this capability israther limited in vaue because the results cannot always be
loaded into atable. If we try, by running the same query within a CREATE TABLE satement, as

CREATE TABLE not _corr AS

SELECT *
FROM num
QUTER UNI ON
SELECT *

FROM char

we get

WARNI NG Variable id already exists on file WRK NOT_CORR
WARNI NG Vari abl e value already exists on file WORK NOT_CORR

and the new table only contains two columns and looks like this:

id value
3 0

S0, when set operators are used, the burden of assuring that digned columns are compatible with
respect to type rests with the programmer.

OVERVIEW: UNION, INTERSECT, AND EXCEPT
The available set operators, and the variations introduced through the use of optiona keywords, can be
categorized in terms of four issues, which in turn can be presented as two pairs of two. The issues:

(1A) Wha isthe rule for digning columns?

(1B) What is done with columns which do not aign?
(2A) What isthe rule for accreting rows?

(2B) Are duplicate rows alowed to gppear in the result?

This framework will reved that the OUTER UNION set operator israther digtinctive and unlike the
other three (UNION, INTERSECT, and EXCEPT), which differ from one another only in terms of
their row-accretion rules (2A). That' swhy this overview makes its gppearance midway through this

paper.

Specifically, when we look at the row-accretion rules, we will see that UNION, like OUTER UNION,
accepts those rows which appear in either operand (that is, in the results produced by either embedded
SELECT clause). INTERSECT accepts those rows which appear in both operands. EXCEPT accepts
rows which appear in the first operand but are absent in the second.

In other respects, UNION, INTERSECT, and EXCEPT are essentially dike in behavior, and stand in
contrast to OUTER UNION.

Recal that OUTER UNION aligns columns by name if the CORRESPONDING option is coded. The
other three set operators share this feature. However, in the absence of the CORRESPONDING
option, OUTER UNION does no aignment; in contrast, the default rule for UNION, INTERSECT,
and EXCEPT isto dign by pogtion.

The OUTER UNION operator preserves columns which do not aign, and generates nulls (missing
values) to complete the table. The other set operators shed unaligned columns if CORRESPONDING
is specified, but not if the default positiond dignment isin effect.

The UNION, INTERSECT, and EXCEPT operators by default purge duplicate rows (although the
optional ALL keyword can be used to preempt this behavior). Because OUTER UNION results
typicaly include mismatched columns, filled in with missing vaues, the very concept of duplicate rowsis
dusve; 0 OUTER UNION results smply preserve al rows.

Taken together, the shared characteristics of the UNION, INTERSECT, and EXCEPT set operators
limit the extent to which equivaent processes can be smply coded using the DATA gep. Thisis another
point of contrast with the OUTER UNION operator.

We ve dready seen the OUTER UNION operator in an example. In the sections which follow, the
behavior of the UNION, INTERSECT, and EXCEPT set operators will be illustrated through
examples. Because of the extensive smilarities among the three and because UNION is probably the
most widdly used, it will be covered firgt, and most extensvely. Then the didtinctive characteristics of
INTERSECT and EXCEPT will be presented.

UNION

WE Il begin looking at the UNION operator by using both the ALL and CORRESPONDING options.
Thisyields the form of UNION which most closely resembles the OUTER UNION
CORRESPONDING which we examined earlier. To demonstrate using the same data, we run

CREATE TABLE unional Il corr AS

SELECT *

FROM one

UNI ON ALL CORRESPONDI NG
SELECT *

FROM two

which yidds

Name Age
Joyce 11
John 12
Jane 12
James 12
Alice 13
Thomas 11
Robert 12
Louise 12
Jeffrey 13
Barbara 13

Tables ONE and TWO have columns NAME and AGE in common, so those are the columns which
emergein this result. Note that the data from the two AGE columns are properly combined in asingle
column, even though AGE is the second column in ONE and the third column in TWO. Each source
a0 had an additiond column (HEIGHT in ONE and WEIGHT in TWO), but these are shed by the
UNION operator because their names do not match.

The ALL keyword prevents the UNION operator from diminating duplicate rows. It is not well
illustrated here, because it happens that there are no duplicates. Later, when we turn from column
aignment issues to the subject of row accretion, we will examine and illugtrate the effect of “ALL”; for
now, note that if we omitted it, we would get the same rows, though they would be ordered differently
as asde effect of the process which detects duplicates.

When you know that there are no duplicate rows, coding ALL can speed up processing by avoiding the
search for duplicates. Thisis especidly trueif you don't need an ORDER BY cdlause.

Next, let’s diminate “ CORRESPONDING” and investigate the aternative column aignment rule. Here
isthe code:

CREATE TABLE unionall AS

SELECT *
FROM one
UNI ON ALL

SELECT *

FROM t wo

and the result;

Name Age Height
Joyce 11 51.3
John 12 59
Jane 12 59.8
James 12 57.3
Alice 13 56.5
Thomas 85 11
Robert 128 12
Louise 77 12
Jeffrey &4 13
Barbara 98 13

It gppears that there are a number of implausibly short and ederly students. What has happened, of
course, isthat the columns were digned by position rather than by name; recall that the second column
in table TWO isWEIGHT and the third column is AGE.

Don’'t conclude that omitting the CORRESPONDING keyword always leads to trouble. That wasthe
case here because the column naming was congstent whereas the column ordering was not. In other
Stuations the opposite might be true. Whenever the asterisk (*) isused in either or both of the SELECT
clauses, the column dignment is to some extent implicit, and the appropriateness of the result will
depend on consstency of table organization. Remember that you can dways use explicit SELECT ligts
to control more precisely the column aignment. For example, the last example could be fixed by
changing the code to

CREATE TABLE unionall AS

SELECT *

FROM one

UNI ON ALL

SELECT nanme, age

FROM two

The columns of table ONE are still encountered in their stored order: NAME, AGE, HEIGHT. However, the second
SELECT clause now explicitly callsfor just two columns from table TWO, and in the appropriate order.

Thereaultis

Name Age Height
Joyce 11 51.3
John 12 59.0
Jane 12 59.8
James 12 57.3
Alice 13 56.5
Thomas 11

Robert 12

Louise 12

Jeffrey 13

Barbara 13

Because the dignment is, in the absence of the CORRESPONDING option, positionbased, the
leftover column (HEIGHT) from table ONE is not discarded. Rather, it isincluded in the result, with
nulls (missing vaues) occupying the rows drawn from table TWO.

The dignment of columns by position has no counterpart in the DATA step. When a DATA sep
(spedificdly, the SET statement) handles variables originating in different data sets, they are digned
grictly by name. The DATA step dso lacks a mechanism for automatically shedding variables which do
not aign. Ingtead, dl variables survive, with missing values arisng where source data sets do not supply
vaues All thisis another way of saying, again, that the behavior of the DATA step pardldsthat of
PROC SQL’s OUTER UNION operator with the CORRESPONDING option, and not any flavor of
the smple UNION operator.

One could probably use the DATA step and other non-SQL SAS® fadilities to emulate dignment by
position and shedding of non-aligned columns. However, it would be intricate, involving things like
ingpection of metadata and alot of systematic renaming of variables, and is beyond the scope of this

paper.
At this point we have pretty much covered theissue of column aignment. On the other hand, the
example we have been using does not illustrate the issues and exercise the fegtures pertaining to row

accretion. So we will introduce a new example, one which makes column dignment a non-issue. It
involves two tables; the firgt is named ABC and looks like this:

10

<

T|(|TC|T|T|D Q

and the second is named AB and looks like this;

<

T || | |

Because each has only a single column, and the columns in both tables have the same name and the
same daatype (character, in this case), there is only one possible column dignment, and it will occur
whether or not the CORRESPONDING keyword is coded. Indeed, column dignment is a non-issue.

So the following examples will be about row accretion. The fact that these tables are in sorted order is
quite incidental. The SQL processor does not even know they are sorted.

We |l gart the exploration of row accretion by considering the ALL option. It's a negative option, in the
sense that coding it causes PROC SQL to not do something (purge duplicates) which it would
otherwise do by default. So the following query:

CREATE TABLE unionall AS

SELECT *
FROM abc
UNI ON ALL

SELECT *

FROM ab

11

has as its result

<

T |T|T|T | Q

o

o

T || | |

Thisis smply the concatenation of the two sources (that is, in this case, the tables ABC and AB). Of
course, the ordering isincidental, snce no ORDER BY clause was coded. The sgnificant thing is the
number of times each distinct row appears. The accretion rule for UNIONs is that arow appearsin the
result if it gppearsin either source. When the ALL option is used, the number of timesit gppearsisthe
sum of its populationsin the two sources. That is, if F represents the number of times a distinct row
appearsin the first source (the result of the first SELECT clause) and S represents the

count from the second source, the row will appear F+S times in the result. So,

because “b” gppears four timesin ABC and twice in AB, it gppears Six timesin the

smple UNION. Note that thisis aso the row accretion rule used by the OUTER

UNION operator.

S0 let’s see what happens when the ALL keyword is removed:

CREATE TABLE uni on AS

SELECT *
FROM abc
UNI ON

SELECT *

FROM ab

Thereaultis

As dated earlier, in the absence of “ALL” the duplicate rows are purged.

The UNION operator is commutative, meaning that the results are not changed if the two operands are
interchanged. However, column names and other attributes could be affected by such a switch.

INTERSECT

We turn now to the INTERSECT operator. With regard to column dignmernt, it

behaves just as the UNION operator does, so we won't repeat those details here.

However, whereas the UNION operator accepts rows which appear in either source,
INTERSECT accepts only those rows which appear in both. We Il sart by using it with the ALL

keyword:
CREATE TABLE intersectall AS

SELECT *

FROM abc

| NTERSECT ALL

SELECT *

FROM ab

which givesus

\Y
a
a
b
b

Here, if F represents the number of times adistinct row appearsin the first source (the result of the first
SELECT clause) and S represents the count from the second source, the row will appear min(F,S)
timesin the result.

If we remove the ALL option, leaving the query as

CREATE TABLE intersect AS

SELECT *
FROM abc
| NTERSECT

SELECT *

FROM ab

13

the duplicates are removed and the result is

Like the UNION operator, INTERSECT is commutative. The positions of the operands can be
switched without affecting the content of the result.

EXCEPT

Finaly, we consder the EXCEPT operator. With regard to column aignment, it

behaves just as the UNION operator does, so we won't repeat those details here.

EXCEPT’ s accretion rule is to preserve rows which appear in the first operand

(SELECT dause), but not in the second. Another way of saying thisis that rows are

taken from the first operand unless they are cancelled by virtue of appearance in the second operand.
We'll illudrate, first withthe ALL option in effect.

CREATE TABLE exceptall AS

SELECT *
FROM abc
EXCEPT ALL
SELECT *
FROM ab
givesus

o |lo|<

Here, if F represents the number of timesadigtinct row appearsin the first source (the result of the first
SELECT clause) and S represents the count from the second source, the row will appear max(0,F-S)
timesin the reault.

If we remove the ALL option, leaving the query as

CREATE TABLE except AS

SELECT *
FROM abc
EXCEPT

SELECT *

FROM ab

14

the duplicates are removed and the result is

Unlike UNION and INTERSECT, EXCEPT isnot commutative. Switching the operands changes the
result. Toilludtrate,

CREATE TABLE swi tched AS

SELECT *

FROM ab

EXCEPT ALL

SELECT *

FROM abc
gives us

and without the ALL option returns no rows whatsoever.

EXAMPLES

Brevity
The scenario: Y ou have data sets on sdles for anumber of years. Here sa DATA step to generate
some test data

DATA sal es2004 sal es2005 sal es2006;

DO cust _id = 1001 TO 9999;
DO year = 2004 TO 2006;
date = MDY(1, 1, year);

| F ranuni (123)>0.5 THEN
DO UNTIL (date > MDY(12, 31, year));
date + ROUND(RANUN (123) * 80);
val ue = ROUND(250 * RANUN (123),0.01);
I F RANUNI (123)>0. 6 THEN SELECT (year);
WHEN (2004) QUTPUT sal es2004;
WHEN (2005) QUTPUT sal es2005;
WHEN (2006) QUTPUT sal es2006;
END;
END;

RUN,

15

A few randomly chosen observations from 2005:

Cos cust_id year date val ue
2755 2417 2005 17JUN2005 60. 14
4475 3265 2005 08JUL2005 87.39
4957 3508 2005 16JUN2005 33.96
6258 4126 2005 30DEC2005 91. 90

11350 6650 2005 05NOV2005 150. 27
13123 7519 2005 13MAR2005 30.44
14288 8144 2005 18JUN2005 142. 06

Y ou want to target some specia promotions at people who were at one time good customers, but who
then "disappeared” before more recently returning. The specific criteria: (1) at least $1,000 in orders
during 2004, no ordersin 2005, at least one order in 2006.This problem certainly can be solved with a
DATA dgep. But firgt the data must be aggregated so that there is one observation per customer in each
annud file. PROC SUMMARY isagood toadl; hereisthe code for 2004:

proc summary data=saes2004 nway;,

classcud id;

output out=sum2004(where = (value2004>1000)) sum(value)=vaue2004;
run; The other years are a bit smpler, since the dollar vaues are not needed:

PROC SUMVARY DATA=sal es2005 NWAY;
CLASS cust _id

QUTPUT QUT=sun005

RUN;

PROC SUMMARY DATA=sal es2006 NVWAY;
CLASS cust _id

QUTPUT QOUT=sunR006

RUN;

The solution can be derived by merging the three years data:

data target;

nmer ge sunR004(keep=cust _i d i n=i n2004)
sunm005(keep=cust _i d i n=i n2005)
sunR006(keep=cust _i d i n=i n2006) ;

by cust _id;

if in2004 and (not in2005) and i n2006

run;;

16

Now hereisasolution using SQL set operators.

PRCC SQL;

CREATE TABLE target_sqgl AS
SELECT cust _id

FROM sal es2004
GROUP BY cust _id

HAVI NG SUM val ue) >1000
| NTERSECT

SELECT cust _id

FROM sal es2006
EXCEPT

SELECT cust _id

FROM sal es2005
QUIT,

One somewhat long statement has replaced four separate steps. The SQL solution is more
sraightforward in the way it expresses and links the conditions. The results are identicdl.

Speed

The scenario: Y ou have atable with peopl€ s names, phone numbers, and e-mail addresses. Thereis
some duplication, and aso inconsistency in how the names are recorded (eg, nicknames vs. forma
names). Phone number and e-mail addresses are easier to sandardize, and that’ s already been done.
The present task is to detect possible duplicates by finding pairs of observations where either phone
numbers or e-mail addresses (or both) match, but where names do not match.

Here s atest data generator:

DATA roster;
DOi = 1 TO 30000; DRCP i;

+ 0.1;
+ 0.2;
QUTPUT;
I F RANUNI (111) >0.8 THEN nane = nane + 0.01;
I F RANUNI (111) >0.8 THEN QUTPUT;
END;
RUN;

The data are not redlistic, but are suitable nevertheess for demondration purposes. There are 36,052
observations generated.

A solutionin SQL israther straightforward:

CREATE TABLE sl ow AS

SELECT DI STI NCT rost er. nane,
copy. nane AS diff_nane
FROM roster JON roster AS copy
N r ost er. phone=copy. phone OR
roster.enmail =copy. emai |
WHERE roster.name NELT copy. nane;

17

The log shows:

NOTE: The execution of this query involves performng one or nore Cartesian
product joins that can not be optim zed.

NOTE: Table WORK. SLOWN created, with 2432 rows and 2 col umms.
NOTE: SQL Statenent used (Total process tine):

real tine 3:49. 03
cpu tine 3:44.75

Because of the“OR” in the ON clause, the SQL processor could not optimize the evaluation. Instead it
had to examine dl of the potentid name pairs, and there are more than a billion of those (36,052
squared). The code works, but the test took nearly four minutes.

We can separate the query into two parts, one for each of the join conditions, and combine the results
with the UNION operator.

CREATE TABLE fast AS

SELECT rost er. nane,

copy. nane AS diff_nane
FROM roster JON roster AS copy
N r ost er . phone=copy. phone
WHERE roster.name NE copy. nane
UNI ON
SELECT rost er. nane,

copy. nane AS diff_nane
FROM roster JON roster AS copy
N roster. enail =copy. emai |
WHERE roster.name NE copy. nang,;

The DISTINCT specification can be omitted now because the UNION operator has the same effect.
Logicdly, the two versgons are equivadent, and they produce the same results. However, the log
messages for the second form are:

NOTE: Tabl e WORK. FAST created, with 2432 rows and 2 col ums.

NOTE: SQL Statement used (Total process tine):
real tine 0. 45 seconds
cpu tine 0. 39 seconds

Thetime required is now less than a second, atiny fraction of what it was using the first form. Instead of
examining abillion rows, the computer searched over merely tens of thousands of rows, twice, then
combined those results.

SUMMARY

Set operators complement joins by providing dternative ways of combining data from multiple sources.
Typicaly, set operators perform end-to-end combinations, in contrast to the Side- by-sde combinations
which resut from joins.

The OUTER UNION operator in anumber of ways resembles the operation of a SET statement which
processes two data setsin aDATA step. The other three set operators (UNION, INTERSECT, and
EXCEPT) differ in nature from the OUTER UNION, differ from each other in terms of the s&t-theoretic
rules they implement, but resemble one another in terms of their mechanics. UNION, INTERSECT,

18

and EXCEPT do not have smple DATA step counterparts, though some emulation can be
programmed.

REFERENCES

SASInditute Inc. (2004), SAS9.1 SQL Procedure User's Guide
http://support.sas.com/onlinedoc/913/docMainpage.jsp or
http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_91/base sglproc_6992.pdf

SAS Institute Inc. (2004), Base SAS9.1.3 Procedures Guide http://support.sas.com/onlinedoc/913/docM ainpage.jsp
or http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/base proc_8417.pdf

REVISION HISTORY

Revised May 2007. Corrected misstatement regarding the treatment of not-aligned columns by UNION ALL. Refined
PROC SUMMARY and DATA step code in the brevity example. Other, minor, editorial changes.
First presented at SUGI 31 (March 2006)

CONTACT INFORMATION
Y our comments and questions are valued and encouraged. Contact the author:

Howard Schreler
Howles Informatics
Arlington VA

703-979-2720

hs AT howles DOT com
http://howles.com/saspapers

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

19

