
1

PAPER 242-31

SQL SET OPERATORS: SO HANDY VENN YOU NEED THEM
Howard Schreier, Howles Informatics

ABSTRACT
When it comes to combining data from multiple tables in the SQL Procedure, joins get most of the
attention and subqueries are probably second. Often overlooked are the set operators (OUTER
UNION, UNION, INTERSECT, and EXCEPT). This tutorial begins by relating OUTER UNION to
similar functionality provided by the DATA step's SET statement, then explains and demonstrates the
full repertoire of set operators.

INTRODUCTION
Set operators are so designated because they are conceptually derived from mathematical set theory.
The three basic set operators are UNION, INTERSECT, and EXCEPT. All three, with variations (in
particular, OUTER UNION) and options, are implemented in PROC SQL.

JOINS VS. SET OPERATORS
Before we delve into the details of PROC SQL’s set operators, let’s establish the fundamental
distinctions between joins and set operators. This can be done with a simple example, starting with the
creation of two tiny tables. Here’s the code:

DATA first;
A = 1;
RUN;

DATA second;
B = 2;
RUN;

So each of these tables has one row and one column. We can use PROC SQL to combine the two via
a simple cross join:

SELECT *
FROM first, second
;

The result is:

 A B

 1 2

2

Now we’ll look at the UNION, which is the simplest form of the most widely used of the set operators.
The code to combine our two tables is:

SELECT *
FROM first
UNION
SELECT *
FROM second
;

Before we look at the effect of this statement, let’s look at the syntax and compare it to that of the join.
Notice that “UNION” is inserted between two SELECTs (each of which has, as it must, a subordinate
FROM clause). A set operator works on the results of two SELECTs. This is unlike a join, which is
implemented within the FROM clause of a single SELECT. Notice also that there is but one
semicolon, terminating the entire composite statement.

Now it’s time to look at the result generated by this code:

 A

 1
 2

We see the two numeric values, this time arranged vertically rather than horizontally. This reflects the
fundamental difference between joins and set operators. Joins align rows and accrete columns; set
operators align columns and accrete rows. This is something of an oversimplification of course. SQL is
not a matrix language and provides relatively little symmetry between rows and columns. So the contrast
drawn here between joins and set operators is only a foundation for the details to follow.

OUTER UNION
Not all of the PROC SQL set operators have DATA step counterparts, and in some cases the DATA
step counterparts are rather convoluted. Since the OUTER UNION operator, with the
CORRESPONDING option in effect, does have a straightforward DATA step parallel, we’ll start with
it.

Our first chore is to create a pair of tables with which to demonstrate. This code:

CREATE TABLE one AS
SELECT name, age, height
FROM sashelp.class
WHERE age<14 and LENGTH(name)<6
ORDER BY age, RANUNI(1)
;

CREATE TABLE two AS
SELECT name, weight, age
FROM sashelp.class
WHERE age<14 and LENGTH(name)>5
ORDER BY age, RANUNI(1)
;

3

produces ONE:

and TWO:

The reference to the pseudo-random number function RANUNI in the ORDER BY clauses has
succeeded in shuffling the order of the rows within each AGE group.

Concatenation
The two data sets can be combined vertically, or concatenated, in a DATA step by naming them both in
a single SET statement. Here is the code:

DATA concat;
SET one
 two
 ;
RUN;

Name Age Height

Joyce 11 51.3

John 12 59

Jane 12 59.8

James 12 57.3

Alice 13 56.5

Name Weight Age

Thomas 85 11

Robert 128 12

Louise 77 12

Jeffrey 84 13

Barbara 98 13

4

The result looks like this:

The equivalent SQL statement is:

CREATE TABLE concat AS
SELECT *
FROM one
OUTER UNION CORRESPONDING
SELECT *
FROM two
;

It produces the same result.

Notice that the common (that is, like-named) columns (NAME and AGE) have been aligned. That is a
consequence of the CORRESPONDING option. The mismatched columns (HEIGHT and WEIGHT)
also appear, with missing values for the cells which have no “ancestry” in the source tables; that is
characteristic of an OUTER UNION (as distinguished from a simple UNION). The fact that the
DATA step and PROC SQL place the columns in the same order is a coincidence, attributable to the
relative simplicity of this example (SQL places the common columns first, followed by the columns
which appear only in the first SELECT, followed by the columns which appear only in the second
SELECT; the DATA step places the variables from the first data set first, followed by the variables
which are found only in the second data set).

The order of the rows is also the same. Since there is no ORDER BY clause in the SQL code, the SQL
processor is not obligated to deliver its results in any particular order. The order we observe is basically
a consequence of internal optimization; the processor is avoiding unnecessary work by simply
preserving the order in which it encounters the rows.

Data Type Compatibility
The alignment of columns in these examples has worked smoothly because the aligned columns have
matched with respect to data type (numeric or character). Since column alignment is an essential aspect
of almost all of the set operators, it’s worth exploring this a bit more. We’ll need some test data sets
with deliberate type mismatches:

Name Age Height Weight

Joyce 11 51.3 .

John 12 59 .

Jane 12 59.8 .

James 12 57.3 .

Alice 13 56.5 .

Thomas 11 . 85

Robert 12 . 128

Louise 12 . 77

Jeffrey 13 . 84

Barbara 13 . 98

5

DATA num;
id = 3;
value = 0;
RUN;

DATA char;
id = 4;
value = 'abc';
RUN;

Notice that VALUE is numeric in data set NUM but character in data set CHAR. So when we attempt
a DATA step concatenation with

DATA both;
SET num char;
RUN;

we get a failure, with this log message:

ERROR: Variable value has been defined as both character and numeric.

The new data set (BOTH) is created, but contains no observations. If we run the parallel SQL code:

CREATE TABLE both AS
SELECT *
FROM num
OUTER UNION CORRESPONDING
SELECT *
FROM char
;

the log message is

ERROR: Column 2 from the first contributor of OUTER UNION is not the same
type as its counterpart from the second.

Unlike the DATA step, PROC SQL does not create even an empty table in this situation.

There is just one set operator which is immune to data type mismatches because it does no column
alignment; that is the OUTER UNION operator, without the CORRESPONDING option. To
illustrate, we can run a display query (that is, a freestanding SELECT statement rather than one within a
CREATE statement):

SELECT *
FROM num
OUTER UNION
SELECT *
FROM char
;

The result is

 id value id value

 3 0 .
 . . 4 abc

6

Notice that the original ID columns from the two source tables are kept separate, even though they are
compatible with regard to data type. The OUTER UNION operator attempts no column alignment
whatsoever. Thus it is immune to error conditions due to type mismatch and will display all data from the
source tables. However, this capability is rather limited in value because the results cannot always be
loaded into a table. If we try, by running the same query within a CREATE TABLE statement, as

CREATE TABLE not_corr AS
SELECT *
FROM num
OUTER UNION
SELECT *
FROM char
;

we get

WARNING: Variable id already exists on file WORK.NOT_CORR.
WARNING: Variable value already exists on file WORK.NOT_CORR.

and the new table only contains two columns and looks like this:

So, when set operators are used, the burden of assuring that aligned columns are compatible with
respect to type rests with the programmer.

OVERVIEW: UNION, INTERSECT, AND EXCEPT
The available set operators, and the variations introduced through the use of optional keywords, can be
categorized in terms of four issues, which in turn can be presented as two pairs of two. The issues:

(1A) What is the rule for aligning columns?

(1B) What is done with columns which do not align?

(2A) What is the rule for accreting rows?

(2B) Are duplicate rows allowed to appear in the result?

This framework will reveal that the OUTER UNION set operator is rather distinctive and unlike the
other three (UNION, INTERSECT, and EXCEPT), which differ from one another only in terms of
their row-accretion rules (2A). That’s why this overview makes its appearance midway through this
paper.

Specifically, when we look at the row-accretion rules, we will see that UNION, like OUTER UNION,
accepts those rows which appear in either operand (that is, in the results produced by either embedded
SELECT clause). INTERSECT accepts those rows which appear in both operands. EXCEPT accepts
rows which appear in the first operand but are absent in the second.

id value

3 0

. .

7

In other respects, UNION, INTERSECT, and EXCEPT are essentially alike in behavior, and stand in
contrast to OUTER UNION.

Recall that OUTER UNION aligns columns by name if the CORRESPONDING option is coded. The
other three set operators share this feature. However, in the absence of the CORRESPONDING
option, OUTER UNION does no alignment; in contrast, the default rule for UNION, INTERSECT,
and EXCEPT is to align by position.

The OUTER UNION operator preserves columns which do not align, and generates nulls (missing
values) to complete the table. The other set operators shed unaligned columns if CORRESPONDING
is specified, but not if the default positional alignment is in effect.

The UNION, INTERSECT, and EXCEPT operators by default purge duplicate rows (although the
optional ALL keyword can be used to preempt this behavior). Because OUTER UNION results
typically include mismatched columns, filled in with missing values, the very concept of duplicate rows is
elusive; so OUTER UNION results simply preserve all rows.

Taken together, the shared characteristics of the UNION, INTERSECT, and EXCEPT set operators
limit the extent to which equivalent processes can be simply coded using the DATA step. This is another
point of contrast with the OUTER UNION operator.

We’ve already seen the OUTER UNION operator in an example. In the sections which follow, the
behavior of the UNION, INTERSECT, and EXCEPT set operators will be illustrated through
examples. Because of the extensive similarities among the three and because UNION is probably the
most widely used, it will be covered first, and most extensively. Then the distinctive characteristics of
INTERSECT and EXCEPT will be presented.

UNION
We’ll begin looking at the UNION operator by using both the ALL and CORRESPONDING options.
This yields the form of UNION which most closely resembles the OUTER UNION
CORRESPONDING which we examined earlier. To demonstrate using the same data, we run

CREATE TABLE unionallcorr AS
SELECT *
FROM one
UNION ALL CORRESPONDING
SELECT *
FROM two
;

8

which yields

Tables ONE and TWO have columns NAME and AGE in common, so those are the columns which
emerge in this result. Note that the data from the two AGE columns are properly combined in a single
column, even though AGE is the second column in ONE and the third column in TWO. Each source
also had an additional column (HEIGHT in ONE and WEIGHT in TWO), but these are shed by the
UNION operator because their names do not match.

The ALL keyword prevents the UNION operator from eliminating duplicate rows. It is not well
illustrated here, because it happens that there are no duplicates. Later, when we turn from column
alignment issues to the subject of row accretion, we will examine and illustrate the effect of “ALL”; for
now, note that if we omitted it, we would get the same rows, though they would be ordered differently
as a side effect of the process which detects duplicates.

When you know that there are no duplicate rows, coding ALL can speed up processing by avoiding the
search for duplicates. This is especially true if you don’t need an ORDER BY clause.

Next, let’s eliminate “CORRESPONDING” and investigate the alternative column alignment rule. Here
is the code:

CREATE TABLE unionall AS
SELECT *
FROM one
UNION ALL
SELECT *
FROM two
;

Name Age

Joyce 11

John 12

Jane 12

James 12

Alice 13

Thomas 11

Robert 12

Louise 12

Jeffrey 13

Barbara 13

9

and the result:

It appears that there are a number of implausibly short and elderly students. What has happened, of
course, is that the columns were aligned by position rather than by name; recall that the second column
in table TWO is WEIGHT and the third column is AGE.

Don’t conclude that omitting the CORRESPONDING keyword always leads to trouble. That was the
case here because the column naming was consistent whereas the column ordering was not. In other
situations the opposite might be true. Whenever the asterisk (*) is used in either or both of the SELECT
clauses, the column alignment is to some extent implicit, and the appropriateness of the result will
depend on consistency of table organization. Remember that you can always use explicit SELECT lists
to control more precisely the column alignment. For example, the last example could be fixed by
changing the code to

CREATE TABLE unionall AS
SELECT *
FROM one
UNION ALL
SELECT name, age
FROM two
;

The columns of table ONE are still encountered in their stored order: NAME, AGE, HEIGHT. However, the second
SELECT clause now explicitly calls for just two columns from table TWO, and in the appropriate order.

Name Age Height

Joyce 11 51.3

John 12 59

Jane 12 59.8

James 12 57.3

Alice 13 56.5

Thomas 85 11

Robert 128 12

Louise 77 12

Jeffrey 84 13

Barbara 98 13

10

The result is:

Because the alignment is, in the absence of the CORRESPONDING option, position-based, the
leftover column (HEIGHT) from table ONE is not discarded. Rather, it is included in the result, with
nulls (missing values) occupying the rows drawn from table TWO.

The alignment of columns by position has no counterpart in the DATA step. When a DATA step
(specifically, the SET statement) handles variables originating in different data sets, they are aligned
strictly by name. The DATA step also lacks a mechanism for automatically shedding variables which do
not align. Instead, all variables survive, with missing values arising where source data sets do not supply
values. All this is another way of saying, again, that the behavior of the DATA step parallels that of
PROC SQL’s OUTER UNION operator with the CORRESPONDING option, and not any flavor of
the simple UNION operator.

One could probably use the DATA step and other non-SQL SAS® facilities to emulate alignment by
position and shedding of non-aligned columns. However, it would be intricate, involving things like
inspection of metadata and a lot of systematic renaming of variables, and is beyond the scope of this
paper.

At this point we have pretty much covered the issue of column alignment. On the other hand, the
example we have been using does not illustrate the issues and exercise the features pertaining to row
accretion. So we will introduce a new example, one which makes column alignment a non-issue. It
involves two tables; the first is named ABC and looks like this:

Name Age Height

Joyce 11 51.3

John 12 59.0

Jane 12 59.8

James 12 57.3

Alice 13 56.5

Thomas 11 .

Robert 12 .

Louise 12 .

Jeffrey 13 .

Barbara 13 .

11

and the second is named AB and looks like this:

Because each has only a single column, and the columns in both tables have the same name and the
same data type (character, in this case), there is only one possible column alignment, and it will occur
whether or not the CORRESPONDING keyword is coded. Indeed, column alignment is a non-issue.

So the following examples will be about row accretion. The fact that these tables are in sorted order is
quite incidental. The SQL processor does not even know they are sorted.

We’ll start the exploration of row accretion by considering the ALL option. It’s a negative option, in the
sense that coding it causes PROC SQL to not do something (purge duplicates) which it would
otherwise do by default. So the following query:

CREATE TABLE unionall AS
SELECT *
FROM abc
UNION ALL
SELECT *
FROM ab
;

v

a

a

b

b

b

b

c

c

v

a

a

a

b

b

12

has as its result

This is simply the concatenation of the two sources (that is, in this case, the tables ABC and AB). Of
course, the ordering is incidental, since no ORDER BY clause was coded. The significant thing is the
number of times each distinct row appears. The accretion rule for UNIONs is that a row appears in the
result if it appears in either source. When the ALL option is used, the number of times it appears is the
sum of its populations in the two sources. That is, if F represents the number of times a distinct row
appears in the first source (the result of the first SELECT clause) and S represents the
count from the second source, the row will appear F+S times in the result. So,
because “b” appears four times in ABC and twice in AB, it appears six times in the
simple UNION. Note that this is also the row accretion rule used by the OUTER
UNION operator.

So let’s see what happens when the ALL keyword is removed:

CREATE TABLE union AS
SELECT *
FROM abc
UNION
SELECT *
FROM ab
;

v

a

a

b

b

b

b

c

c

a

a

a

b

b

13

The result is

As stated earlier, in the absence of “ALL” the duplicate rows are purged.

The UNION operator is commutative, meaning that the results are not changed if the two operands are
interchanged. However, column names and other attributes could be affected by such a switch.

INTERSECT
We turn now to the INTERSECT operator. With regard to column alignment, it
behaves just as the UNION operator does, so we won’t repeat those details here.
However, whereas the UNION operator accepts rows which appear in either source,
INTERSECT accepts only those rows which appear in both. We’ll start by using it with the ALL
keyword:

CREATE TABLE intersectall AS
SELECT *
FROM abc
INTERSECT ALL
SELECT *
FROM ab
;

which gives us

Here, if F represents the number of times a distinct row appears in the first source (the result of the first
SELECT clause) and S represents the count from the second source, the row will appear min(F,S)
times in the result.

If we remove the ALL option, leaving the query as

CREATE TABLE intersect AS
SELECT *
FROM abc
INTERSECT
SELECT *
FROM ab
;

v

a

b

c

v

a

a

b

b

14

the duplicates are removed and the result is

Like the UNION operator, INTERSECT is commutative. The positions of the operands can be
switched without affecting the content of the result.

EXCEPT
Finally, we consider the EXCEPT operator. With regard to column alignment, it
behaves just as the UNION operator does, so we won’t repeat those details here.
EXCEPT’s accretion rule is to preserve rows which appear in the first operand
(SELECT clause), but not in the second. Another way of saying this is that rows are
taken from the first operand unless they are cancelled by virtue of appearance in the second operand.
We’ll illustrate, first with the ALL option in effect.

CREATE TABLE exceptall AS
SELECT *
FROM abc
EXCEPT ALL
SELECT *
FROM ab
;

gives us

Here, if F represents the number of times a distinct row appears in the first source (the result of the first
SELECT clause) and S represents the count from the second source, the row will appear max(0,F-S)
times in the result.

If we remove the ALL option, leaving the query as

CREATE TABLE except AS
SELECT *
FROM abc
EXCEPT
SELECT *
FROM ab
;

v

a

b

v

b

b

c

c

15

the duplicates are removed and the result is

Unlike UNION and INTERSECT, EXCEPT is not commutative. Switching the operands changes the
result. To illustrate,

CREATE TABLE switched AS
SELECT *
FROM ab
EXCEPT ALL
SELECT *
FROM abc
;

gives us

and without the ALL option returns no rows whatsoever.

EXAMPLES

Brevity
The scenario: You have data sets on sales for a number of years. Here’s a DATA step to generate
some test data:

DATA sales2004 sales2005 sales2006;
DO cust_id = 1001 TO 9999;
 DO year = 2004 TO 2006;
 date = MDY(1,1,year);
 IF ranuni(123)>0.5 THEN
 DO UNTIL (date > MDY(12,31,year));
 date + ROUND(RANUNI(123) * 80);
 value = ROUND(250 * RANUNI(123),0.01);
 IF RANUNI(123)>0.6 THEN SELECT (year);
 WHEN (2004) OUTPUT sales2004;
 WHEN (2005) OUTPUT sales2005;
 WHEN (2006) OUTPUT sales2006;
 END;
 END;
 END;
 END;
RUN;

v

c

v

a

16

A few randomly chosen observations from 2005:

 Obs cust_id year date value

 2755 2417 2005 17JUN2005 60.14
 4475 3265 2005 08JUL2005 87.39
 4957 3508 2005 16JUN2005 33.96
 6258 4126 2005 30DEC2005 91.90
11350 6650 2005 05NOV2005 150.27
13123 7519 2005 13MAR2005 30.44
14288 8144 2005 18JUN2005 142.06

You want to target some special promotions at people who were at one time good customers, but who
then "disappeared" before more recently returning. The specific criteria: (1) at least $1,000 in orders
during 2004, no orders in 2005, at least one order in 2006.This problem certainly can be solved with a
DATA step. But first the data must be aggregated so that there is one observation per customer in each
annual file. PROC SUMMARY is a good tool; here is the code for 2004:

proc summary data=sales2004 nway;
class cust_id;
output out=sum2004(where = (value2004>1000)) sum(value)=value2004;
run;The other years are a bit simpler, since the dollar values are not needed:

PROC SUMMARY DATA=sales2005 NWAY;
CLASS cust_id;
OUTPUT OUT=sum2005;
RUN;

PROC SUMMARY DATA=sales2006 NWAY;
CLASS cust_id;
OUTPUT OUT=sum2006;
RUN;

The solution can be derived by merging the three years’ data:

data target;
merge sum2004(keep=cust_id in=in2004)
 sum2005(keep=cust_id in=in2005)
 sum2006(keep=cust_id in=in2006);
by cust_id;
if in2004 and (not in2005) and in2006;
run;;

17

Now here is a solution using SQL set operators:

PROC SQL;
CREATE TABLE target_sql AS
SELECT cust_id
FROM sales2004
GROUP BY cust_id
HAVING SUM(value)>1000
INTERSECT
SELECT cust_id
FROM sales2006
EXCEPT
SELECT cust_id
FROM sales2005
;
QUIT;

One somewhat long statement has replaced four separate steps. The SQL solution is more
straightforward in the way it expresses and links the conditions. The results are identical.

Speed
The scenario: You have a table with people’s names, phone numbers, and e-mail addresses. There is
some duplication, and also inconsistency in how the names are recorded (eg, nicknames vs. formal
names). Phone number and e-mail addresses are easier to standardize, and that’s already been done.
The present task is to detect possible duplicates by finding pairs of observations where either phone
numbers or e-mail addresses (or both) match, but where names do not match.

Here’s a test data generator:

DATA roster;
DO i = 1 TO 30000; DROP i;
 name = i;
 phone = i + 0.1;
 email = i + 0.2;
 OUTPUT;
 IF RANUNI(111)>0.8 THEN name = name + 0.01;
 IF RANUNI(111)>0.8 THEN OUTPUT;
 END;
RUN;

The data are not realistic, but are suitable nevertheless for demonstration purposes. There are 36,052
observations generated.

A solution in SQL is rather straightforward:

CREATE TABLE slow AS
SELECT DISTINCT roster.name,
 copy.name AS diff_name
FROM roster JOIN roster AS copy
ON roster.phone=copy.phone OR
 roster.email=copy.email
WHERE roster.name NELT copy.name;

18

The log shows:

NOTE: The execution of this query involves performing one or more Cartesian
product joins that can not be optimized.

NOTE: Table WORK.SLOW created, with 2432 rows and 2 columns.

NOTE: SQL Statement used (Total process time):
 real time 3:49.03
 cpu time 3:44.75

Because of the “OR” in the ON clause, the SQL processor could not optimize the evaluation. Instead it
had to examine all of the potential name pairs, and there are more than a billion of those (36,052
squared). The code works, but the test took nearly four minutes.

We can separate the query into two parts, one for each of the join conditions, and combine the results
with the UNION operator.

CREATE TABLE fast AS
SELECT roster.name,
 copy.name AS diff_name
FROM roster JOIN roster AS copy
ON roster.phone=copy.phone
WHERE roster.name NE copy.name
UNION
SELECT roster.name,
 copy.name AS diff_name
FROM roster JOIN roster AS copy
ON roster.email=copy.email
WHERE roster.name NE copy.name;

The DISTINCT specification can be omitted now because the UNION operator has the same effect.
Logically, the two versions are equivalent, and they produce the same results. However, the log
messages for the second form are:

NOTE: Table WORK.FAST created, with 2432 rows and 2 columns.

NOTE: SQL Statement used (Total process time):
 real time 0.45 seconds
 cpu time 0.39 seconds

The time required is now less than a second, a tiny fraction of what it was using the first form. Instead of
examining a billion rows, the computer searched over merely tens of thousands of rows, twice, then
combined those results.

SUMMARY
Set operators complement joins by providing alternative ways of combining data from multiple sources.
Typically, set operators perform end-to-end combinations, in contrast to the side-by-side combinations
which result from joins.

The OUTER UNION operator in a number of ways resembles the operation of a SET statement which
processes two data sets in a DATA step. The other three set operators (UNION, INTERSECT, and
EXCEPT) differ in nature from the OUTER UNION, differ from each other in terms of the set-theoretic
rules they implement, but resemble one another in terms of their mechanics. UNION, INTERSECT,

19

and EXCEPT do not have simple DATA step counterparts, though some emulation can be
programmed.

REFERENCES
SAS Institute Inc. (2004), SAS 9.1 SQL Procedure User's Guide
http://support.sas.com/onlinedoc/913/docMainpage.jsp or
http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_91/base_sqlproc_6992.pdf

SAS Institute Inc. (2004), Base SAS 9.1.3 Procedures Guide http://support.sas.com/onlinedoc/913/docMainpage.jsp
or http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/base_proc_8417.pdf

REVISION HISTORY

Revised May 2007. Corrected misstatement regarding the treatment of not-aligned columns by UNION ALL. Refined
PROC SUMMARY and DATA step code in the brevity example. Other, minor, editorial changes.
First presented at SUGI 31 (March 2006)

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author:

Howard Schreier
Howles Informatics
Arlington VA

703-979-2720

hs AT howles DOT com
http://howles.com/saspapers/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

